Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2013, Volume 52, Number 2, Pages 131–144 (Mi al578)  

This article is cited in 1 scientific paper (total in 1 paper)

Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism

N. A. Bazhenova, R. R. Tukhbatullinab

a Novosibirsk State University, Novosibirsk, Russia
b CERGE–EI, a joint workplace of Charles Univ. and Economics Inst. Acad. Sci. Czech Repub., Politických vězňů, 7, 11121 Prague, Czech Republic
Full-text PDF (207 kB) Citations (1)
References:
Abstract: It is proved that every computably enumerable Turing degree is a degree of categoricity of some computable Boolean algebra with a distinguished automorphism. We construct an example of a computably categorical Boolean algebra with a distinguished automorphism, having a set of atoms in a given computably enumerable Turing degree.
Keywords: Boolean algebra with distinguished automorphism, computable categoricity, categoricity spectrum, degree of categoricity.
Received: 24.07.2012
English version:
Algebra and Logic, 2013, Volume 52, Issue 2, Pages 89–97
DOI: https://doi.org/10.1007/s10469-013-9224-y
Bibliographic databases:
Document Type: Article
UDC: 512.563+510.5+510.6
Language: Russian
Citation: N. A. Bazhenov, R. R. Tukhbatullina, “Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism”, Algebra Logika, 52:2 (2013), 131–144; Algebra and Logic, 52:2 (2013), 89–97
Citation in format AMSBIB
\Bibitem{BazTuk13}
\by N.~A.~Bazhenov, R.~R.~Tukhbatullina
\paper Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
\jour Algebra Logika
\yr 2013
\vol 52
\issue 2
\pages 131--144
\mathnet{http://mi.mathnet.ru/al578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3134779}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 2
\pages 89--97
\crossref{https://doi.org/10.1007/s10469-013-9224-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321627100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884953653}
Linking options:
  • https://www.mathnet.ru/eng/al578
  • https://www.mathnet.ru/eng/al/v52/i2/p131
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :88
    References:83
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024