Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2013, Volume 52, Number 1, Pages 99–108 (Mi al575)  

This article is cited in 9 scientific papers (total in 9 papers)

Rank and order of a finite group admitting a Frobenius group of automorphisms

E. I. Khukhro

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (168 kB) Citations (9)
References:
Abstract: Suppose that a finite group $G$ admits a Frobenius group $FH$ of automorphisms of coprime order with kernel $F$ and complement $H$. For the case where $G$ is a finite $p$-group such that $G=[G,F]$, it is proved that the order of $G$ is bounded above in terms of the order of $H$ and the order of the fixed-point subgroup $C_G(H)$ of the complement, while the rank of $G$ is bounded above in terms of $|H|$ and the rank of $C_G(H)$. Earlier, such results were known under the stronger assumption that the kernel $F$ acts on $G$ fixed-point-freely. As a corollary, for the case where $G$ is an arbitrary finite group with a Frobenius group $FH$ of automorphisms of coprime order with kernel $F$ and complement $H$, estimates are obtained which are of the form $|G|\le|C_G(F)|\cdot f(|H|,|C_G(H)|)$ for the order, and of the form $\mathbf r(G)\le\mathbf r(C_G(F))+g(|H|,\mathbf r(C_G(H)))$ for the rank, where $f$ and $g$ are some functions of two variables.
Keywords: finite group, Frobenius group, automorphism, rank, order, $p$-group.
Received: 22.08.2012
English version:
Algebra and Logic, 2013, Volume 52, Issue 1, Pages 72–78
DOI: https://doi.org/10.1007/s10469-013-9221-1
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: E. I. Khukhro, “Rank and order of a finite group admitting a Frobenius group of automorphisms”, Algebra Logika, 52:1 (2013), 99–108; Algebra and Logic, 52:1 (2013), 72–78
Citation in format AMSBIB
\Bibitem{Khu13}
\by E.~I.~Khukhro
\paper Rank and order of a~finite group admitting a~Frobenius group of automorphisms
\jour Algebra Logika
\yr 2013
\vol 52
\issue 1
\pages 99--108
\mathnet{http://mi.mathnet.ru/al575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113801}
\zmath{https://zbmath.org/?q=an:06189477}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 1
\pages 72--78
\crossref{https://doi.org/10.1007/s10469-013-9221-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319133000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877085218}
Linking options:
  • https://www.mathnet.ru/eng/al575
  • https://www.mathnet.ru/eng/al/v52/i1/p99
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :143
    References:61
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024