|
Integral closure of a valuation ring in a finite extension
Yu. L. Ershovab a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Abstract:
The main result of the paper is
THEOREM 1. If a minimal polynomial $f$ for $\theta$ over $F$ is $v$-separable,
then there exists a nonzero element $\pi\in R$ such that $\pi S\le R[\theta]$.
Keywords:
valued field, minimal polynomial, $v$-separable polynomial.
Received: 01.03.2013
Citation:
Yu. L. Ershov, “Integral closure of a valuation ring in a finite extension”, Algebra Logika, 52:1 (2013), 84–91; Algebra and Logic, 52:1 (2013), 61–66
Linking options:
https://www.mathnet.ru/eng/al573 https://www.mathnet.ru/eng/al/v52/i1/p84
|
Statistics & downloads: |
Abstract page: | 343 | Full-text PDF : | 71 | References: | 57 | First page: | 37 |
|