Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2012, Volume 51, Number 6, Pages 766–771 (Mi al563)  

Geometric and conditional geometric equivalences of algebras

A. G. Pinus

Novosibirsk, Russia
References:
Abstract: The basis for classifying universal algebras is conventionally formed by one or other type of equivalence relations between the algebras, such as isomorphism, elementary equivalence, equivalence of algebras in other logical languages, geometric equivalence, and so on. Of crucial importance in this event are results that reduce one of such equivalences to another. The most important example (enjoying multiple applications) is the theorem stating that every two algebras are elementarily equivalent iff their ultrapowers with respect to some ultrafilters are isomorphic. Similar results are established for different equivalences of algebras relevant to algebraic geometry of universal algebras.
Keywords: geometrically equivalent algebras, conditionally geometrically equivalent algebras, syntactically implicitly equivalent algebras, $\infty$-quasiequational theory of algebras.
Received: 08.12.2011
English version:
Algebra and Logic, 2013, Volume 51, Issue 6, Pages 507–510
DOI: https://doi.org/10.1007/s10469-013-9210-4
Bibliographic databases:
Document Type: Article
UDC: 512.57
Language: Russian
Citation: A. G. Pinus, “Geometric and conditional geometric equivalences of algebras”, Algebra Logika, 51:6 (2012), 766–771; Algebra and Logic, 51:6 (2013), 507–510
Citation in format AMSBIB
\Bibitem{Pin12}
\by A.~G.~Pinus
\paper Geometric and conditional geometric equivalences of algebras
\jour Algebra Logika
\yr 2012
\vol 51
\issue 6
\pages 766--771
\mathnet{http://mi.mathnet.ru/al563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088141}
\zmath{https://zbmath.org/?q=an:06189469}
\transl
\jour Algebra and Logic
\yr 2013
\vol 51
\issue 6
\pages 507--510
\crossref{https://doi.org/10.1007/s10469-013-9210-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316014000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880699943}
Linking options:
  • https://www.mathnet.ru/eng/al563
  • https://www.mathnet.ru/eng/al/v51/i6/p766
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :71
    References:42
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024