Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 1, Pages 32–59 (Mi al56)  

This article is cited in 2 scientific papers (total in 2 papers)

Automorphisms of Sylow $p$-Subgroups of Chevalley Groups Defined over Residue Rings of Integers

S. G. Kolesnikov

Krasnoyarsk State Technical University
Full-text PDF (281 kB) Citations (2)
References:
Abstract: We deal with automorphisms of Sylow $p$-subgroups $S\Phi(Z_{p^m})$ of Chevalley groups of normal types $\Phi$, defined over residue rings $Z_{p^m}$ of integers modulo $p^m$, where $m\geqslant 2$ and $p>3$ is a prime. It is shown that in this case all automorphisms of $S\Phi(Z_{p^m})$ factor into a product of inner, diagonal, graph, central automorphisms and some explicitly specified automorphism of order $p$. The results obtained give the answer (under the condition that $p>3$) to Question 12.42 posed by Levchyuk in [4], which called for furnishing a description of automorphisms of a Sylow $p$-subgroup of a normal type Chevalley group over a residue ring of integers modulo $p^m$, where $m\geqslant 2$ and $p$ is a prime.
Keywords: Chevalley group, Sylow $p$-subgroup, automorphism.
Received: 18.02.2002
English version:
Algebra and Logic, 2004, Volume 43, Issue 1, Pages 17–33
DOI: https://doi.org/10.1023/B:ALLO.0000015128.63471.74
Bibliographic databases:
UDC: 512.544.3
Language: Russian
Citation: S. G. Kolesnikov, “Automorphisms of Sylow $p$-Subgroups of Chevalley Groups Defined over Residue Rings of Integers”, Algebra Logika, 43:1 (2004), 32–59; Algebra and Logic, 43:1 (2004), 17–33
Citation in format AMSBIB
\Bibitem{Kol04}
\by S.~G.~Kolesnikov
\paper Automorphisms of Sylow $p$-Subgroups of Chevalley Groups Defined over Residue Rings of Integers
\jour Algebra Logika
\yr 2004
\vol 43
\issue 1
\pages 32--59
\mathnet{http://mi.mathnet.ru/al56}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2073444}
\zmath{https://zbmath.org/?q=an:1079.20065}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 1
\pages 17--33
\crossref{https://doi.org/10.1023/B:ALLO.0000015128.63471.74}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349105181}
Linking options:
  • https://www.mathnet.ru/eng/al56
  • https://www.mathnet.ru/eng/al/v43/i1/p32
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :132
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024