Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2012, Volume 51, Number 5, Pages 638–651 (Mi al555)  

This article is cited in 1 scientific paper (total in 1 paper)

The local structure of groups of triangular automorphisms of relatively free algebras

V. A. Roman'kov

Dostoevskii Omsk State University, Omsk, Russia
Full-text PDF (184 kB) Citations (1)
References:
Abstract: Let $K$ be an arbitrary field and $C_n$ a relatively free algebra of rank $n$. In particular, as $C_n$ we may treat a polynomial algebra $P_n$, a free associative algebra $A_n$, or an absolutely free algebra $F_n$. For the algebras $C_n=P_n$, $A_n$, $F_n$, it is proved that every finitely generated subgroup $G$ of a group $TC_n$ of triangular automorphisms admits a faithful matrix representation over a field $K$; hence it is residually finite by Mal’tsev's theorem. For any algebra $C_n$, the triangular automorphism group $TC_n$ is locally soluble, while the unitriangular automorphism group $UC_n$ is locally nilpotent. Consequently, $UC_n$ is local (linear and residually finite). Also it is stated that the width of the commutator subgroup of a finitely generated subgroup $G$ of $UC_n$ can be arbitrarily large with increasing $n$ or transcendence degree of a field $K$ over its prime subfield.
Keywords: relatively free algebra, polynomial algebra, free associative algebra, absolutely free algebra, group of (uni)triangular automorphisms of algebra, matrix representation, residual finiteness, width of commutator subgroup.
Received: 22.03.2012
Revised: 13.08.2012
English version:
Algebra and Logic, 2012, Volume 51, Issue 5, Pages 425–434
DOI: https://doi.org/10.1007/s10469-012-9202-9
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. A. Roman'kov, “The local structure of groups of triangular automorphisms of relatively free algebras”, Algebra Logika, 51:5 (2012), 638–651; Algebra and Logic, 51:5 (2012), 425–434
Citation in format AMSBIB
\Bibitem{Rom12}
\by V.~A.~Roman'kov
\paper The local structure of groups of triangular automorphisms of relatively free algebras
\jour Algebra Logika
\yr 2012
\vol 51
\issue 5
\pages 638--651
\mathnet{http://mi.mathnet.ru/al555}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3075104}
\zmath{https://zbmath.org/?q=an:06138173}
\transl
\jour Algebra and Logic
\yr 2012
\vol 51
\issue 5
\pages 425--434
\crossref{https://doi.org/10.1007/s10469-012-9202-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312401000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871360303}
Linking options:
  • https://www.mathnet.ru/eng/al555
  • https://www.mathnet.ru/eng/al/v51/i5/p638
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :67
    References:61
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024