Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2012, Volume 51, Number 5, Pages 565–578 (Mi al551)  

Groups with relatively small normalizers of primary subgroups

V. A. Antonov

National Research South Ural State University, Chelyabinsk, Russia
References:
Abstract: The structure of finite groups $G$ is studied in which for every primary subgroup $A$, almost all of its automorphisms induced by elements of $G$ are inner. Namely, for any such subgroup, the index $|N(A):A\cdot C(A)|$ divides some prime number. These groups are called $NSP$-groups.
Keywords: finite group, inner automorphism, $NSP$-group.
Received: 04.05.2010
English version:
Algebra and Logic, 2012, Volume 51, Issue 5, Pages 375–383
DOI: https://doi.org/10.1007/s10469-012-9198-1
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. A. Antonov, “Groups with relatively small normalizers of primary subgroups”, Algebra Logika, 51:5 (2012), 565–578; Algebra and Logic, 51:5 (2012), 375–383
Citation in format AMSBIB
\Bibitem{Ant12}
\by V.~A.~Antonov
\paper Groups with relatively small normalizers of primary subgroups
\jour Algebra Logika
\yr 2012
\vol 51
\issue 5
\pages 565--578
\mathnet{http://mi.mathnet.ru/al551}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3075100}
\zmath{https://zbmath.org/?q=an:06138172}
\transl
\jour Algebra and Logic
\yr 2012
\vol 51
\issue 5
\pages 375--383
\crossref{https://doi.org/10.1007/s10469-012-9198-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312401000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871384401}
Linking options:
  • https://www.mathnet.ru/eng/al551
  • https://www.mathnet.ru/eng/al/v51/i5/p565
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :67
    References:83
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024