Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 1, Pages 3–31 (Mi al55)  

This article is cited in 4 scientific papers (total in 4 papers)

A Weaker Version of Congruence-Permutability for Semigroup Varieties

B. M. Vernikov

Ural State University
Full-text PDF (296 kB) Citations (4)
References:
Abstract: Congruences $\alpha$ and $\beta$ are 2.5-permutable if $\alpha\vee\beta=\alpha\beta\cup\beta\alpha$, where $\vee$ is a union in the congruence lattice and $\cup$ is the set-theoretic union. A semigroup variety $\mathcal V$ is $fi$-permutable ($fi$-2.5-permutable) if every two fully invariant congruences are permutable (2.5-permutable) on all $\mathcal V$-free semigroups. Previously, a description has been furnished for $fi$-permutable semigroup varieties. Here, it is proved that a semigroup variety is $fi$-2.5-permutable iff it either consists of completely simple semigroups, or coincides with a variety of all semilattices, or is contained in one of the explicitly specified nil-semigroup varieties. As a consequence we see that (a) for semigroup varieties that are not nil-varieties, the property of being $fi$-2.5-permutable is equivalent to being $fi$-permutable; (b) for a nil-variety $\mathcal V$, if the lattice $L(\mathcal V)$ of its subvarieties is distributive then is $fi$-2.5-permutable; (c) if $\mathcal V$ is combinatorial or is not completely simple then the fact that $\mathcal V$ is $fi$-2.5-permutable implies that $L(\mathcal V)$ belongs to a variety generated by a 5-element modular non-distributive lattice.
Keywords: variety, semilattice, nil-semigroup, congruence-permutability.
Received: 18.02.2002
English version:
Algebra and Logic, 2004, Volume 43, Issue 1, Pages 1–16
DOI: https://doi.org/10.1023/B:ALLO.0000015127.50736.36
Bibliographic databases:
UDC: 512.532.2
Language: Russian
Citation: B. M. Vernikov, “A Weaker Version of Congruence-Permutability for Semigroup Varieties”, Algebra Logika, 43:1 (2004), 3–31; Algebra and Logic, 43:1 (2004), 1–16
Citation in format AMSBIB
\Bibitem{Ver04}
\by B.~M.~Vernikov
\paper A Weaker Version of Congruence-Permutability for Semigroup Varieties
\jour Algebra Logika
\yr 2004
\vol 43
\issue 1
\pages 3--31
\mathnet{http://mi.mathnet.ru/al55}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2073443}
\zmath{https://zbmath.org/?q=an:1115.20048}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 1
\pages 1--16
\crossref{https://doi.org/10.1023/B:ALLO.0000015127.50736.36}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349103042}
Linking options:
  • https://www.mathnet.ru/eng/al55
  • https://www.mathnet.ru/eng/al/v43/i1/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :103
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024