Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2012, Volume 51, Number 1, Pages 129–147 (Mi al525)  

This article is cited in 5 scientific papers (total in 5 papers)

$\Sigma$-uniform structures and $\Sigma$-functions. II

A. N. Khisamiev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (242 kB) Citations (5)
References:
Abstract: We construct a family of $\Sigma$-uniform Abelian groups and a family of $\Sigma$-uniform rings. Conditions are specified that are necessary and sufficient for a universal $\Sigma$-function to exist in a hereditarily finite admissible set over structures in these families. It is proved that there is a set $S$ of primes such that no universal $\Sigma$-function exists in hereditarily finite admissible sets $\mathbb{HF}(G)$ and $\mathbb{HF}(K)$, where $G=\oplus\{Z_p\mid p\in S\}$ is a group, $Z_p$ is a cyclic group of order $p$, $K=\oplus\{F_p\mid p\in S\}$ is a ring, and $F_p$ is a prime field of characteristic $p$.
Keywords: hereditarily finite admissible set, $\Sigma$-definability, universal $\Sigma$-function, $\Sigma$-uniform structure, Abelian group, ring.
Received: 24.11.2010
Revised: 05.06.2011
English version:
Algebra and Logic, 2012, Volume 51, Issue 1, Pages 89–102
DOI: https://doi.org/10.1007/s10469-012-9172-y
Bibliographic databases:
Document Type: Article
UDC: 512.540+510.5
Language: Russian
Citation: A. N. Khisamiev, “$\Sigma$-uniform structures and $\Sigma$-functions. II”, Algebra Logika, 51:1 (2012), 129–147; Algebra and Logic, 51:1 (2012), 89–102
Citation in format AMSBIB
\Bibitem{Khi12}
\by A.~N.~Khisamiev
\paper $\Sigma$-uniform structures and $\Sigma$-functions.~II
\jour Algebra Logika
\yr 2012
\vol 51
\issue 1
\pages 129--147
\mathnet{http://mi.mathnet.ru/al525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986467}
\zmath{https://zbmath.org/?q=an:06115025}
\transl
\jour Algebra and Logic
\yr 2012
\vol 51
\issue 1
\pages 89--102
\crossref{https://doi.org/10.1007/s10469-012-9172-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304163300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861895833}
Linking options:
  • https://www.mathnet.ru/eng/al525
  • https://www.mathnet.ru/eng/al/v51/i1/p129
    Cycle of papers
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024