Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2011, Volume 50, Number 6, Pages 802–821 (Mi al517)  

This article is cited in 17 scientific papers (total in 17 papers)

Universal theories for rigid soluble groups

A. G. Myasnikova, N. S. Romanovskiibc

a Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: A group is said to be $p$-rigid, where $p$ is a natural number, if it has a normal series of the form
$$ G=G_1>G_2>\dots>G_p>G_{p+1}=1, $$
whose quotients $G_i/G_{i+1}$ are Abelian and are torsion free when treated as $\mathbb Z[G/G_i]$-modules. Examples of rigid groups are free soluble groups. We point out a recursive system of universal axioms distinguishing $p$-rigid groups in the class of $p$-soluble groups. It is proved that if $F$ is a free $p$-soluble group, $G$ is an arbitrary $p$-rigid group, and $W$ is an iterated wreath product of $p$ infinite cyclic groups, then $\forall$-theories for these groups satisfy the inclusions
$$ \mathcal A(F)\supseteq\mathcal A(G)\supseteq\mathcal A(W). $$
We construct an $\exists$-axiom distinguishing among $p$-rigid groups those that are universally equivalent to $W$. An arbitrary $p$-rigid group embeds in a divisible decomposed $p$-rigid group $M=M(\alpha_ 1,\dots,\alpha_ p)$. The latter group factors into a semidirect product of Abelian groups $A_1A_2\dots A_p$, in which case every quotient $M_i/M_{i+1}$ of its rigid series is isomorphic to $A_i$ and is a divisible module of rank $\alpha_i$ over a ring $\mathbb Z[M/M_i]$. We specify a recursive system of axioms distinguishing among $M$-groups those that are Muniversally equivalent to $M$. As a consequence, it is stated that the universal theory of $M$ with constants in $M$ is decidable. By contrast, the universal theory of $W$ with constants is undecidable.
Keywords: $p$-rigid group, universal theory of group, decidable theory.
Received: 01.03.2011
English version:
Algebra and Logic, 2012, Volume 50, Issue 6, Pages 539–552
DOI: https://doi.org/10.1007/s10469-012-9164-y
Bibliographic databases:
Document Type: Article
UDC: 512.54.05
Language: Russian
Citation: A. G. Myasnikov, N. S. Romanovskii, “Universal theories for rigid soluble groups”, Algebra Logika, 50:6 (2011), 802–821; Algebra and Logic, 50:6 (2012), 539–552
Citation in format AMSBIB
\Bibitem{MyaRom11}
\by A.~G.~Myasnikov, N.~S.~Romanovskii
\paper Universal theories for rigid soluble groups
\jour Algebra Logika
\yr 2011
\vol 50
\issue 6
\pages 802--821
\mathnet{http://mi.mathnet.ru/al517}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2953279}
\zmath{https://zbmath.org/?q=an:1263.20034}
\transl
\jour Algebra and Logic
\yr 2012
\vol 50
\issue 6
\pages 539--552
\crossref{https://doi.org/10.1007/s10469-012-9164-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000302031700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858753364}
Linking options:
  • https://www.mathnet.ru/eng/al517
  • https://www.mathnet.ru/eng/al/v50/i6/p802
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024