Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2011, Volume 50, Number 3, Pages 368–387 (Mi al491)  

A quasivariety lattice of torsion-free soluble groups

A. L. Polushin

Altai State University, Barnaul, Russia
References:
Abstract: Let $L_q(qG)$ be a lattice of quasivarieties contained in a quasivariety generated by a group $G$. It is proved that if $G$ is a torsion-free finitely generated group in $\mathcal{AB}_{p^k}$, where $p$ is a prime, $p\ne2$, and $k\in\mathbf N$, which is a split extension of an Abelian group by a cyclic group, then the lattice $L_q(qG)$ is a finite chain.
Keywords: quasivariety, quasivariety lattice, metabelian group.
Received: 05.05.2010
Revised: 17.11.2010
English version:
Algebra and Logic, 2011, Volume 50, Issue 3, Pages 257–271
DOI: https://doi.org/10.1007/s10469-011-9139-4
Bibliographic databases:
Document Type: Article
UDC: 512.54.01
Language: Russian
Citation: A. L. Polushin, “A quasivariety lattice of torsion-free soluble groups”, Algebra Logika, 50:3 (2011), 368–387; Algebra and Logic, 50:3 (2011), 257–271
Citation in format AMSBIB
\Bibitem{Pol11}
\by A.~L.~Polushin
\paper A quasivariety lattice of torsion-free soluble groups
\jour Algebra Logika
\yr 2011
\vol 50
\issue 3
\pages 368--387
\mathnet{http://mi.mathnet.ru/al491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2882200}
\zmath{https://zbmath.org/?q=an:1266.20041}
\transl
\jour Algebra and Logic
\yr 2011
\vol 50
\issue 3
\pages 257--271
\crossref{https://doi.org/10.1007/s10469-011-9139-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293459500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961027184}
Linking options:
  • https://www.mathnet.ru/eng/al491
  • https://www.mathnet.ru/eng/al/v50/i3/p368
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025