Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2010, Volume 49, Number 6, Pages 803–818 (Mi al468)  

This article is cited in 19 scientific papers (total in 19 papers)

Coproducts of rigid groups

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: Let $\varepsilon=(\varepsilon_1,\dots,\varepsilon_m)$ be a tuple consisting of zeros and ones. Suppose that a group $G$ has a normal series of the form
$$ G=G_1\ge G_2\ge\dots\ge G_m\ge G_{m+1}=1, $$
in which $G_i>G_{i+1}$ for $\varepsilon_i=1$, $G_i=G_{i+1}$ for $\varepsilon_i=0$, and all factors $G_i/G_{i+1}$ of the series are Abelian and are torsion free as right $\mathbb Z[G/G_i]$-modules. Such a series, if it exists, is defined by the group $G$ and by the tuple $\varepsilon$ uniquely. We call $G$ with the specified series a rigid $m$-graded group with grading $\varepsilon$. In a free solvable group of derived length $m$, the above-formulated condition is satisfied by a series of derived subgroups. We define the concept of a morphism of rigid $m$-graded groups.
It is proved that the category of rigid $m$-graded groups contains coproducts, and we show how to construct a coproduct $G\circ H$ of two given rigid $m$-graded groups. Also it is stated that if $G$ is a rigid $m$-graded group with grading $(1,1,\dots,1)$, and $F$ is a free solvable group of derived length $m$ with basis $\{x_1,\dots,x_n\}$, then $G\circ F$ is the coordinate group of an affine space $G^n$ in variables $x_1,\dots,x_n$ and this space is irreducible in the Zariski topology.
Keywords: rigid $m$-graded group, coproduct, coordinate group of affine space, Zariski topology.
Received: 02.08.2010
English version:
Algebra and Logic, 2010, Volume 49, Issue 6, Pages 539–550
DOI: https://doi.org/10.1007/s10469-011-9116-y
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. S. Romanovskii, “Coproducts of rigid groups”, Algebra Logika, 49:6 (2010), 803–818; Algebra and Logic, 49:6 (2010), 539–550
Citation in format AMSBIB
\Bibitem{Rom10}
\by N.~S.~Romanovskii
\paper Coproducts of rigid groups
\jour Algebra Logika
\yr 2010
\vol 49
\issue 6
\pages 803--818
\mathnet{http://mi.mathnet.ru/al468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2829609}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 6
\pages 539--550
\crossref{https://doi.org/10.1007/s10469-011-9116-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288430700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952243956}
Linking options:
  • https://www.mathnet.ru/eng/al468
  • https://www.mathnet.ru/eng/al/v49/i6/p803
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024