Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2010, Volume 49, Number 6, Pages 757–765 (Mi al465)  

Toward a theorem of Douady

Yu. L. Ershovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: A theorem of Douady says that the absolute Galois group of a rational function field $F(x)$ in one variable over an algebraically closed field $F$ of characteristic 0 is a free profinite group. A new method is proposed to extend Douady's theorem from the case of the complex number field $F=\mathbb C$ to the case of an arbitrary field.
Keywords: absolute Galois group, profinite group, field.
Received: 10.11.2010
English version:
Algebra and Logic, 2010, Volume 49, Issue 6, Pages 509–514
DOI: https://doi.org/10.1007/s10469-011-9113-1
Bibliographic databases:
Document Type: Article
UDC: 512.623.4
Language: Russian
Citation: Yu. L. Ershov, “Toward a theorem of Douady”, Algebra Logika, 49:6 (2010), 757–765; Algebra and Logic, 49:6 (2010), 509–514
Citation in format AMSBIB
\Bibitem{Ers10}
\by Yu.~L.~Ershov
\paper Toward a~theorem of Douady
\jour Algebra Logika
\yr 2010
\vol 49
\issue 6
\pages 757--765
\mathnet{http://mi.mathnet.ru/al465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2828873}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 6
\pages 509--514
\crossref{https://doi.org/10.1007/s10469-011-9113-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288430700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952249983}
Linking options:
  • https://www.mathnet.ru/eng/al465
  • https://www.mathnet.ru/eng/al/v49/i6/p757
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024