Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2010, Volume 49, Number 6, Pages 715–756 (Mi al464)  

This article is cited in 34 scientific papers (total in 34 papers)

Algebraic geometry over algebraic structures. IV. Equational domains and codomains

É Yu. Daniyarovaa, A. G. Myasnikovb, V. N. Remeslennikova

a Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science, Omsk, Russia
b Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
References:
Abstract: We introduce and study equational domains and equational codomains. Informally, an equational domain is an algebra every finite union of algebraic sets over which is an algebraic set; an equational codomain is an algebra every proper finite union of algebraic sets over which is not an algebraic set.
Keywords: algebra, algebraic set, universal algebraic geometry, disjunctive equation, equational domain, equational codomain, discriminating algebra, codiscriminating algebra.
Received: 07.08.2010
Revised: 28.11.2010
English version:
Algebra and Logic, 2010, Volume 49, Issue 6, Pages 483–508
DOI: https://doi.org/10.1007/s10469-011-9112-2
Bibliographic databases:
Document Type: Article
UDC: 512.71+512.577+512.55
Language: Russian
Citation: É Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. IV. Equational domains and codomains”, Algebra Logika, 49:6 (2010), 715–756; Algebra and Logic, 49:6 (2010), 483–508
Citation in format AMSBIB
\Bibitem{DanMyaRem10}
\by \'E~Yu.~Daniyarova, A.~G.~Myasnikov, V.~N.~Remeslennikov
\paper Algebraic geometry over algebraic structures.~IV. Equational domains and codomains
\jour Algebra Logika
\yr 2010
\vol 49
\issue 6
\pages 715--756
\mathnet{http://mi.mathnet.ru/al464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2828872}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 6
\pages 483--508
\crossref{https://doi.org/10.1007/s10469-011-9112-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288430700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952248324}
Linking options:
  • https://www.mathnet.ru/eng/al464
  • https://www.mathnet.ru/eng/al/v49/i6/p715
    Cycle of papers
    This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:664
    Full-text PDF :147
    References:78
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024