Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2010, Volume 49, Number 5, Pages 630–653 (Mi al458)  

This article is cited in 5 scientific papers (total in 5 papers)

Generalized Kripke semantics for Nelson's logic

E. I. Latkin

Novosibirsk, Russia
Full-text PDF (251 kB) Citations (5)
References:
Abstract: A completeness theorem for logics $N4^N$ and $N3^0$ is proved. A characterization by classes of $N4^N$- and $N3^0$-models is presented, and it is proved that all logics of four types $\eta(L)$, $\eta^3(L)$, $\eta^n(L)$, and $\eta^0(L)$ are Kripke complete iff so are their respective intuitionistic fragments $L$. A generalized Kripke semantics is introduced, and it is stated that such is equivalent to an algebraic semantics. The concept of a $p$-morphism between generalized frames is defined and basic statements on $p$-morphisms are proved.
Keywords: Nelson logic, Kripke semantics, algebraic semantics, generalized frame.
Received: 21.08.2009
English version:
Algebra and Logic, 2010, Volume 49, Issue 5, Pages 426–443
DOI: https://doi.org/10.1007/s10469-010-9107-4
Bibliographic databases:
Document Type: Article
UDC: 510.64
Language: Russian
Citation: E. I. Latkin, “Generalized Kripke semantics for Nelson's logic”, Algebra Logika, 49:5 (2010), 630–653; Algebra and Logic, 49:5 (2010), 426–443
Citation in format AMSBIB
\Bibitem{Lat10}
\by E.~I.~Latkin
\paper Generalized Kripke semantics for Nelson's logic
\jour Algebra Logika
\yr 2010
\vol 49
\issue 5
\pages 630--653
\mathnet{http://mi.mathnet.ru/al458}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2796490}
\zmath{https://zbmath.org/?q=an:06115004}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 5
\pages 426--443
\crossref{https://doi.org/10.1007/s10469-010-9107-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288429600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650415819}
Linking options:
  • https://www.mathnet.ru/eng/al458
  • https://www.mathnet.ru/eng/al/v49/i5/p630
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :153
    References:61
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024