Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2010, Volume 49, Number 4, Pages 451–478 (Mi al449)  

The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$

V. Yu. Gubarev

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: Let $\wedge^k\mathbb R^n$ be the $k$th outer power of a space $\mathbb R^n$, $V(m,n,k)=S^m(\wedge^k\mathbb R^n)$ the $m$th symmetric power of $\mathbb R^n$, and $V_0=L((x_1\wedge\dots\wedge x_k)^m):x_i\in\mathbb R^n$). We construct a basis and compute a dimension of $V_0$ for $m=2$, and for $m$ arbitrary, present an effective algorithm of finding a basis and computing a dimension for the space $V_0(m,n,k)$. An upper bound for the dimension of $V_0$ is established, which implies that
$$ \lim_{m\to1}\frac{\dim V_0(m,n,k)}{\dim V(m,n,k)}=0. $$
The results obtained are applied to study a Grassmann variety and finite-dimensional Lie algebras.
Keywords: symmetric power of space, outer power of space, Grassmann variety.
Received: 24.04.2009
Revised: 29.07.2009
English version:
Algebra and Logic, 2010, Volume 49, Issue 4, Pages 305–325
DOI: https://doi.org/10.1007/s10469-010-9098-1
Bibliographic databases:
Document Type: Article
UDC: 512.64
Language: Russian
Citation: V. Yu. Gubarev, “The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$”, Algebra Logika, 49:4 (2010), 451–478; Algebra and Logic, 49:4 (2010), 305–325
Citation in format AMSBIB
\Bibitem{Gub10}
\by V.~Yu.~Gubarev
\paper The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$
\jour Algebra Logika
\yr 2010
\vol 49
\issue 4
\pages 451--478
\mathnet{http://mi.mathnet.ru/al449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2790172}
\zmath{https://zbmath.org/?q=an:1257.15015}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 4
\pages 305--325
\crossref{https://doi.org/10.1007/s10469-010-9098-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288429000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149414487}
Linking options:
  • https://www.mathnet.ru/eng/al449
  • https://www.mathnet.ru/eng/al/v49/i4/p451
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024