|
This article is cited in 13 scientific papers (total in 13 papers)
Noncommutative Jordan superalgebras of degree $n>2$
A. P. Pozhidaeva, I. P. Shestakovab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Departamento de Matemática, Universidade de São Paulo, São Paulo-SEP, BRASIL
Abstract:
We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree $n>2$, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree $n>1$ is simple. Modulo a “nodal” case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.
Keywords:
noncommutative Jordan superalgebra, coordinatization theorem.
Received: 30.09.2009
Citation:
A. P. Pozhidaev, I. P. Shestakov, “Noncommutative Jordan superalgebras of degree $n>2$”, Algebra Logika, 49:1 (2010), 26–59; Algebra and Logic, 49:1 (2010), 18–42
Linking options:
https://www.mathnet.ru/eng/al428 https://www.mathnet.ru/eng/al/v49/i1/p26
|
Statistics & downloads: |
Abstract page: | 549 | Full-text PDF : | 140 | References: | 60 | First page: | 13 |
|