Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2009, Volume 48, Number 6, Pages 793–818 (Mi al424)  

This article is cited in 27 scientific papers (total in 27 papers)

Irreducible algebraic sets over divisible decomposed rigid groups

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: A soluble group $G$ is said to be rigid if it contains a normal series of the form
$$ G=G_1>G_2>\dots>G_p>G_{p+1}=1, $$
whose quotients $G_i/G_{i+1}$ are Abelian and are torsion-free when treated as right $\mathbb Z[G/G_i]$-modules. Free soluble groups are important examples of rigid groups. A rigid group $G$ is divisible if elements of a quotient $G_i/G_{i+1}$ are divisible by nonzero elements of a ring $\mathbb Z[G/G_i]$, or, in other words, $G_i/G_{i+1}$ is a vector space over a division ring $Q(G/G_i)$ of quotients of that ring. A rigid group $G$ is decomposed if it splits into a semidirect product $A_1A_2\dots A_p$ of Abelian groups $A_i\cong G_i/G_{i+1}$. A decomposed divisible rigid group is uniquely defined by cardinalities $\alpha_i$ of bases of suitable vector spaces $A_i$, and we denote it by $M(\alpha_1,\dots,\alpha_ p)$.
The concept of a rigid group appeared in [arXiv:0808.2932v1 [math.GR]], where the dimension theory is constructed for algebraic geometry over finitely generated rigid groups. In [Algebra i Logika, <b>48</b>:2 (2009), 258–279], all rigid groups were proved to be equationally Noetherian, and it was stated that any rigid group is embedded in a suitable decomposed divisible rigid group $M(\alpha_1,\dots,\alpha_ p)$. Our present goal is to derive important information directly about algebraic geometry over $M(\alpha_1,\dots,\alpha_ p)$. Namely, irreducible algebraic sets are characterized in the language of coordinate groups of these sets, and we describe groups that are universally equivalent over $M(\alpha_1,\dots,\alpha_ p)$ using the language of equations.
Keywords: algebraic geometry, irreducible algebraic set, rigid group, universally equivalent groups.
Received: 15.08.2009
English version:
Algebra and Logic, 2009, Volume 48, Issue 6, Pages 449–464
DOI: https://doi.org/10.1007/s10469-009-9071-z
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: N. S. Romanovskii, “Irreducible algebraic sets over divisible decomposed rigid groups”, Algebra Logika, 48:6 (2009), 793–818; Algebra and Logic, 48:6 (2009), 449–464
Citation in format AMSBIB
\Bibitem{Rom09}
\by N.~S.~Romanovskii
\paper Irreducible algebraic sets over divisible decomposed rigid groups
\jour Algebra Logika
\yr 2009
\vol 48
\issue 6
\pages 793--818
\mathnet{http://mi.mathnet.ru/al424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2640965}
\zmath{https://zbmath.org/?q=an:1245.20054}
\transl
\jour Algebra and Logic
\yr 2009
\vol 48
\issue 6
\pages 449--464
\crossref{https://doi.org/10.1007/s10469-009-9071-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273168500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949270192}
Linking options:
  • https://www.mathnet.ru/eng/al424
  • https://www.mathnet.ru/eng/al/v48/i6/p793
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:522
    Full-text PDF :79
    References:58
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024