Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2003, Volume 42, Number 5, Pages 515–541 (Mi al42)  

This article is cited in 21 scientific papers (total in 21 papers)

Structure of a Conjugating Automorphism Group

V. G. Bardakov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We examine the automorphism group ${\rm Aut}(F_n)$ of a free group $F_n$ of rank $n\geqslant 2$ on free generators $x_1,x_2,\ldots,x_n$. It is known that ${\rm Aut}(F_2)$ can be built from cyclic subgroups using a free and semidirect product. A question remains open as to whether this result can be extended to the case $n>2$. Every automorphism of ${\rm Aut}(F_n)$ sending a generator $x_i$ to an element $f_i^{-1}x_{\pi(i)}f_i$, where $f_i\in F_n$ and $\pi$ is some permutation on a symmetric group $S_n$, is called a conjugating automorphism. The conjugating automorphism group is denoted $C_n$. A set of automorphisms for which $\pi$ is the identity permutation form a basis-conjugating automorphism group, denoted $Cb_n$. It is proved that $Cb_n$ can be factored into a semidirect product of some groups.
As a consequence we obtain a normal form for words in $C_n$. For $n\geqslant 4$, $C_n$ and $Cb_n$ have an undecidable occurrence problem in finitely generated subgroups. It is also shown that $C_n$, $n\geqslant 2$, is generated by at most four elements, and we find its respective genetic code, and that $Cb_n$, $n\geqslant 2$, has no proper verbal subgroups of finite width.
Keywords: conjugating automorphism group, basis-conjugating automorphism group, occurrence problem in finitely generated subgroups, factorization of a group into a semidirect product.
Received: 07.12.2001
English version:
Algebra and Logic, 2003, Volume 42, Issue 5, Pages 287–303
DOI: https://doi.org/10.1023/A:1025913505208
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. G. Bardakov, “Structure of a Conjugating Automorphism Group”, Algebra Logika, 42:5 (2003), 515–541; Algebra and Logic, 42:5 (2003), 287–303
Citation in format AMSBIB
\Bibitem{Bar03}
\by V.~G.~Bardakov
\paper Structure of a~Conjugating Automorphism Group
\jour Algebra Logika
\yr 2003
\vol 42
\issue 5
\pages 515--541
\mathnet{http://mi.mathnet.ru/al42}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025714}
\zmath{https://zbmath.org/?q=an:1067.20041}
\elib{https://elibrary.ru/item.asp?id=8967721}
\transl
\jour Algebra and Logic
\yr 2003
\vol 42
\issue 5
\pages 287--303
\crossref{https://doi.org/10.1023/A:1025913505208}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249116084}
Linking options:
  • https://www.mathnet.ru/eng/al42
  • https://www.mathnet.ru/eng/al/v42/i5/p515
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :139
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024