|
This article is cited in 21 scientific papers (total in 21 papers)
Computability on linear orderings enriched with predicates
P. E. Alaevab, J. Thurberc, A. N. Frolovd a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Math. Program, Eastern Oregon Univ., La Grande, OR, USA
d N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University, Kazan, Russia
Abstract:
Let $L$ be a quasidiscrete linear ordering. We specify some conditions for the existence of a computable presentation for $L$ or for the structure $(L,\operatorname{adj})$, where $\operatorname{adj}(x,y)$ is a predicate distinguishing adjacent elements.
Keywords:
computability, quasidiscrete linear ordering.
Received: 17.12.2008
Citation:
P. E. Alaev, J. Thurber, A. N. Frolov, “Computability on linear orderings enriched with predicates”, Algebra Logika, 48:5 (2009), 549–563; Algebra and Logic, 48:5 (2009), 313–320
Linking options:
https://www.mathnet.ru/eng/al413 https://www.mathnet.ru/eng/al/v48/i5/p549
|
Statistics & downloads: |
Abstract page: | 462 | Full-text PDF : | 109 | References: | 77 | First page: | 6 |
|