Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2009, Volume 48, Number 4, Pages 520–539 (Mi al411)  

This article is cited in 22 scientific papers (total in 22 papers)

Abelian groups with normal endomorphism rings

A. R. Chekhlov

Tomsk, RUSSIA
References:
Abstract: A ring is said to be normal if all of its idempotents are central. It is proved that a mixed group $A$ with a normal endomorphism ring contains a pure fully invariant subgroup $G\oplus B$, the endomorphism ring of a group $G$ is commutative, and a subgroup $B$ is not always distinguished by a direct summand in $A$. We describe separable, coperiodic, and other groups with normal endomorphism rings. Also we consider Abelian groups in which the square of the Lie bracket of any two endomorphisms is the zero endomorphism. It is proved that every central invariant subgroup of a group is fully invariant iff the endomorphism ring of the group is commutative.
Keywords: fully invariant subgroup, central invariant subgroup, normal endomorphism ring, invariant endomorphism ring, Lie bracket of endomorphisms.
Received: 19.01.2009
Revised: 19.02.2009
English version:
Algebra and Logic, 2009, Volume 48, Issue 4, Pages 298–308
DOI: https://doi.org/10.1007/s10469-009-9056-y
Bibliographic databases:
UDC: 512.541
Language: Russian
Citation: A. R. Chekhlov, “Abelian groups with normal endomorphism rings”, Algebra Logika, 48:4 (2009), 520–539; Algebra and Logic, 48:4 (2009), 298–308
Citation in format AMSBIB
\Bibitem{Che09}
\by A.~R.~Chekhlov
\paper Abelian groups with normal endomorphism rings
\jour Algebra Logika
\yr 2009
\vol 48
\issue 4
\pages 520--539
\mathnet{http://mi.mathnet.ru/al411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584539}
\zmath{https://zbmath.org/?q=an:1245.20069}
\transl
\jour Algebra and Logic
\yr 2009
\vol 48
\issue 4
\pages 298--308
\crossref{https://doi.org/10.1007/s10469-009-9056-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271395400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350719081}
Linking options:
  • https://www.mathnet.ru/eng/al411
  • https://www.mathnet.ru/eng/al/v48/i4/p520
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:777
    Full-text PDF :106
    References:69
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024