Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2009, Volume 48, Number 3, Pages 378–399 (Mi al404)  

Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups

A. A. Mishchenko

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science, Omsk, RUSSIA
References:
Abstract: The results obtained deal in algebraic geometry over partially commutative class two nilpotent $\mathbb Q$-groups, where $\mathbb Q$ is a field of rationals. It is proved that two arbitrary non-Abelian partially commutative class two nilpotent $\mathbb Q$-groups are geometrically equivalent. A necessary and sufficient condition of being universally geometrically equivalent is specified for two partially commutative class two nilpotent $\mathbb Q$-groups. Algebraic sets for systems of equations in one variable, as well as for some special systems in several variables, are described.
Keywords: partially commutative class two nilpotent $\mathbb Q$-group, geometric equivalence, algebraic set.
Received: 30.01.2009
English version:
Algebra and Logic, 2009, Volume 48, Issue 3, Pages 214–227
DOI: https://doi.org/10.1007/s10469-009-9054-0
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: A. A. Mishchenko, “Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups”, Algebra Logika, 48:3 (2009), 378–399; Algebra and Logic, 48:3 (2009), 214–227
Citation in format AMSBIB
\Bibitem{Mis09}
\by A.~A.~Mishchenko
\paper Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups
\jour Algebra Logika
\yr 2009
\vol 48
\issue 3
\pages 378--399
\mathnet{http://mi.mathnet.ru/al404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2573025}
\zmath{https://zbmath.org/?q=an:1245.20053}
\transl
\jour Algebra and Logic
\yr 2009
\vol 48
\issue 3
\pages 214--227
\crossref{https://doi.org/10.1007/s10469-009-9054-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268053600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70449523429}
Linking options:
  • https://www.mathnet.ru/eng/al404
  • https://www.mathnet.ru/eng/al/v48/i3/p378
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024