Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2009, Volume 48, Number 2, Pages 190–202 (Mi al396)  

This article is cited in 6 scientific papers (total in 6 papers)

Groups containing a strongly embedded subgroup

D. V. Lytkinaa, V. D. Mazurovb

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (194 kB) Citations (6)
References:
Abstract: An involution $v$ of a group $G$ is said to be finite (in $G$) if $vv^g$ has finite order for any $v\in G$. A subgroup $B$ of $G$ is called a strongly embedded (in $G$) subgroup if $B$ and $G\setminus B$ contain involutions, but $B\cap B^g$ does not, for any $g\in G\setminus B$.
We prove the following results.
Theorem 1. Let a group $G$ contain a finite involution and an involution whose centralizer in $G$ is periodic. If every finite subgroup of $G$ of even order is contained in a simple subgroup isomorphic, for some $m$, to $L_2(2^m)$ or $Sz(2^m)$, then $G$ is isomorphic to $L_2(Q)$ or $Sz(Q)$ for some locally finite field $Q$ of characteristic two. In particular, $G$ is locally finite.
Theorem 2. Let a group $G$ contain a finite involution and a strongly embedded subgroup. If the centralizer of some involution in $G$ is a 2-group, and every finite subgroup of even order in $G$ is contained in a finite non-Abelian simple subgroup of $G$, then $G$ is isomorphic to $L_2(Q)$ or $Sz(Q)$ for some locally finite field $Q$ of characteristic two.
Keywords: strongly embedded subgroup, involution, centralizer.
Received: 12.01.2009
English version:
Algebra and Logic, 2009, Volume 48, Issue 2, Pages 108–114
DOI: https://doi.org/10.1007/s10469-009-9046-0
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: D. V. Lytkina, V. D. Mazurov, “Groups containing a strongly embedded subgroup”, Algebra Logika, 48:2 (2009), 190–202; Algebra and Logic, 48:2 (2009), 108–114
Citation in format AMSBIB
\Bibitem{LytMaz09}
\by D.~V.~Lytkina, V.~D.~Mazurov
\paper Groups containing a~strongly embedded subgroup
\jour Algebra Logika
\yr 2009
\vol 48
\issue 2
\pages 190--202
\mathnet{http://mi.mathnet.ru/al396}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2573018}
\zmath{https://zbmath.org/?q=an:1245.20043}
\transl
\jour Algebra and Logic
\yr 2009
\vol 48
\issue 2
\pages 108--114
\crossref{https://doi.org/10.1007/s10469-009-9046-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266918500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67449152243}
Linking options:
  • https://www.mathnet.ru/eng/al396
  • https://www.mathnet.ru/eng/al/v48/i2/p190
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024