Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2009, Volume 48, Number 2, Pages 174–189 (Mi al395)  

This article is cited in 1 scientific paper (total in 1 paper)

Large hyperbolic lattices

F. Grunewalda, G. A. Noskovb

a Mathematisches Institut der Heinrich-Heine-Universität, Düsseldorf, Germany
b Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science, Omsk, Russia
Full-text PDF (217 kB) Citations (1)
References:
Abstract: For a fundamental group of a compact orientable manifold, a condition is specified that is sufficient to guarantee the presence of a “virtual” epimorphism onto a free non-Abelian group. A consequence is deriving a strong Tits alternative. An arbitrary noncompact finitely generated discrete subgroup in $\mathrm{PO}(3,1)$ either is large or is virtually Abelian. An application is provided to the problem of uniform exponential growth for lattices in a 3-dimensional hyperbolic space and of growth of Betti numbers for lattices in a hyperbolic $n$-dimensional space, where $n$ is an odd number.
Keywords: fundamental group, compact orientable manifold, discrete subgroup, hyperbolic lattice, uniform exponential growth problem.
Received: 03.02.2009
English version:
Algebra and Logic, 2009, Volume 48, Issue 2, Pages 99–107
DOI: https://doi.org/10.1007/s10469-009-9049-x
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: F. Grunewald, G. A. Noskov, “Large hyperbolic lattices”, Algebra Logika, 48:2 (2009), 174–189; Algebra and Logic, 48:2 (2009), 99–107
Citation in format AMSBIB
\Bibitem{GruNos09}
\by F.~Grunewald, G.~A.~Noskov
\paper Large hyperbolic lattices
\jour Algebra Logika
\yr 2009
\vol 48
\issue 2
\pages 174--189
\mathnet{http://mi.mathnet.ru/al395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2573017}
\zmath{https://zbmath.org/?q=an:1245.20039}
\transl
\jour Algebra and Logic
\yr 2009
\vol 48
\issue 2
\pages 99--107
\crossref{https://doi.org/10.1007/s10469-009-9049-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266918500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67549091216}
Linking options:
  • https://www.mathnet.ru/eng/al395
  • https://www.mathnet.ru/eng/al/v48/i2/p174
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024