Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2008, Volume 47, Number 6, Pages 762–776 (Mi al386)  

This article is cited in 24 scientific papers (total in 24 papers)

Divisible rigid groups

N. S. Romanovskii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: A soluble group $G$ is rigid if it contains a normal series of the form
$$ G=G_1>G_2>\cdots>G_p>G_{p+1}=1, $$
whose quotients $G_i/G_{i+1}$ are Abelian and are torsion-free as right $\mathbb Z[G/G_i]$-modules. The concept of a rigid group appeared in studying algebraic geometry over groups that are close to free soluble. In the class of all rigid groups, we distinguish divisible groups the elements of whose quotients $G_i/G_{i+1}$ are divisible by any elements of respective groups rings $Z[G/G_i]$. It is reasonable to suppose that algebraic geometry over divisible rigid groups is rather well structured. Abstract properties of such groups are investigated. It is proved that in every divisible rigid group $H$ that contains $G$ as a subgroup, there is a minimal divisible subgroup including $G$, which we call a divisible closure of $G$ in $H$. Among divisible closures of $G$ are divisible completions of $G$ that are distinguished by some natural condition. It is shown that a divisible completion is defined uniquely up to $G$-isomorphism.
Keywords: rigid group, divisible group.
Received: 05.09.2008
English version:
Algebra and Logic, 2008, Volume 47, Issue 6, Pages 426–434
DOI: https://doi.org/10.1007/s10469-008-9030-0
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. S. Romanovskii, “Divisible rigid groups”, Algebra Logika, 47:6 (2008), 762–776; Algebra and Logic, 47:6 (2008), 426–434
Citation in format AMSBIB
\Bibitem{Rom08}
\by N.~S.~Romanovskii
\paper Divisible rigid groups
\jour Algebra Logika
\yr 2008
\vol 47
\issue 6
\pages 762--776
\mathnet{http://mi.mathnet.ru/al386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2508327}
\zmath{https://zbmath.org/?q=an:1245.20035}
\transl
\jour Algebra and Logic
\yr 2008
\vol 47
\issue 6
\pages 426--434
\crossref{https://doi.org/10.1007/s10469-008-9030-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261965400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58049184300}
Linking options:
  • https://www.mathnet.ru/eng/al386
  • https://www.mathnet.ru/eng/al/v47/i6/p762
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:488
    Full-text PDF :110
    References:67
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024