Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2008, Volume 47, Number 5, Pages 541–557 (Mi al374)  

This article is cited in 11 scientific papers (total in 11 papers)

Dominions of universal algebras and projective properties

A. I. Budkin
References:
Abstract: Let $A$ be a universal algebra and $H$ its subalgebra. The dominion of $H$ in $A$ (in a class $\mathcal M$) is the set of all elements $a\in A$ such that every pair of homomorphisms $f,g\colon A\to M\in\mathcal M$ satisfies the following: if $f$ and $g$ coincide on $H$, then $f(a)=g(a)$. A dominion is a closure operator on a set of subalgebras of a given algebra. The present account treats of closed subalgebras, i.e., those subalgebras $H$ whose dominions coincide with $H$. We introduce projective properties of quasivarieties which are similar to the projective Beth properties dealt with in nonclassical logics, and provide a characterization of closed algebras in the language of the new properties. It is also proved that in every quasivariety of torsion-free nilpotent groups of class at most 2, a divisible Abelian subgroup $H$ is closed in each group $\langle H,a\rangle$ generated by one element modulo $H$.
Keywords: universal algebra, dominion, closed algebra, projective property, nilpotent group.
Received: 19.03.2008
Revised: 03.09.2008
English version:
Algebra and Logic, 2008, Volume 47, Issue 5, Pages 304–313
DOI: https://doi.org/10.1007/s10469-008-9029-6
Bibliographic databases:
UDC: 512.57
Language: Russian
Citation: A. I. Budkin, “Dominions of universal algebras and projective properties”, Algebra Logika, 47:5 (2008), 541–557; Algebra and Logic, 47:5 (2008), 304–313
Citation in format AMSBIB
\Bibitem{Bud08}
\by A.~I.~Budkin
\paper Dominions of universal algebras and projective properties
\jour Algebra Logika
\yr 2008
\vol 47
\issue 5
\pages 541--557
\mathnet{http://mi.mathnet.ru/al374}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2508316}
\zmath{https://zbmath.org/?q=an:1164.08313}
\transl
\jour Algebra and Logic
\yr 2008
\vol 47
\issue 5
\pages 304--313
\crossref{https://doi.org/10.1007/s10469-008-9029-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261587200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57849120217}
Linking options:
  • https://www.mathnet.ru/eng/al374
  • https://www.mathnet.ru/eng/al/v47/i5/p541
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024