Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2008, Volume 47, Number 5, Pages 529–540 (Mi al373)  

Extensions of lattice-ordered groups

V. V. Bludova, V. M. Kopytov

a Irkutsk State Pedagogical University
Full-text PDF (172 kB) Citations (1)
References:
Abstract: A number of conditions are specified which are sufficient for totally ordered groups with polycyclic factor group to contain a finite normal series of convex subgroups whose factors possess good enough properties. In any case studying such totally ordered groups is reduced to treating extensions of these groups as well as their virtually $o$-equivalent extensions. The concept of a virtually $o$-equivalent extension is a particular case of the notion of an Archimedean extension.
Keywords: totally ordered group, virtually $o$-equivalent extension, Archimedean extension.
Received: 07.12.2007
English version:
Algebra and Logic, 2008, Volume 47, Issue 5, Pages 297–303
DOI: https://doi.org/10.1007/s10469-008-9028-7
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. V. Bludov, V. M. Kopytov, “Extensions of lattice-ordered groups”, Algebra Logika, 47:5 (2008), 529–540; Algebra and Logic, 47:5 (2008), 297–303
Citation in format AMSBIB
\Bibitem{BluKop08}
\by V.~V.~Bludov, V.~M.~Kopytov
\paper Extensions of lattice-ordered groups
\jour Algebra Logika
\yr 2008
\vol 47
\issue 5
\pages 529--540
\mathnet{http://mi.mathnet.ru/al373}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2508315}
\zmath{https://zbmath.org/?q=an:1164.06326}
\transl
\jour Algebra and Logic
\yr 2008
\vol 47
\issue 5
\pages 297--303
\crossref{https://doi.org/10.1007/s10469-008-9028-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261587200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57849134143}
Linking options:
  • https://www.mathnet.ru/eng/al373
  • https://www.mathnet.ru/eng/al/v47/i5/p529
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024