Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2008, Volume 47, Number 4, Pages 475–490 (Mi al369)  

This article is cited in 4 scientific papers (total in 4 papers)

Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra

N. S. Romanovskiia, I. P. Shestakovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Universidade de São Paulo, Instituto de Matemática e Estatística
Full-text PDF (201 kB) Citations (4)
References:
Abstract: It is proved that a wreath product of two Abelian finite-dimensional Lie algebras over a field of characteristic zero is Noetherian w.r.t. equations of a universal enveloping algebra. This implies that an index 2 soluble free Lie algebra of finite rank, too, has this property.
Keywords: Abelian finite-dimensional algebra, Noetherianness w.r.t. equations of universal enveloping algebra.
Received: 09.01.2008
Revised: 12.02.2008
English version:
Algebra and Logic, 2008, Volume 47, Issue 4, Pages 269–278
DOI: https://doi.org/10.1007/s10469-008-9018-9
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. S. Romanovskii, I. P. Shestakov, “Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra”, Algebra Logika, 47:4 (2008), 475–490; Algebra and Logic, 47:4 (2008), 269–278
Citation in format AMSBIB
\Bibitem{RomShe08}
\by N.~S.~Romanovskii, I.~P.~Shestakov
\paper Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra
\jour Algebra Logika
\yr 2008
\vol 47
\issue 4
\pages 475--490
\mathnet{http://mi.mathnet.ru/al369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2484566}
\zmath{https://zbmath.org/?q=an:1164.17010}
\transl
\jour Algebra and Logic
\yr 2008
\vol 47
\issue 4
\pages 269--278
\crossref{https://doi.org/10.1007/s10469-008-9018-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259714200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54249120304}
Linking options:
  • https://www.mathnet.ru/eng/al369
  • https://www.mathnet.ru/eng/al/v47/i4/p475
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :100
    References:57
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024