Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2008, Volume 47, Number 3, Pages 364–394 (Mi al363)  

This article is cited in 25 scientific papers (total in 25 papers)

The $D_\pi$-property in finite simple groups

D. O. Revin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $\pi$ be some set of primes. A finite group is said to possess the $D_\pi$-property if all of its maximal $\pi$-subgroups are conjugate. It is not hard to show that this property is equivalent to satisfaction of the complete analog of Sylow's theorem for Hall $\pi$-subgroups of a group. In the paper, we bring to a close an arithmetic description of finite simple groups with the $D_\pi$-property, for any set $\pi$ of primes. Previously, it was proved that a finite group possesses the $D_\pi$-property iff each composition factor of the group has this property. Therefore, the results obtained mean in fact that the question of whether a given group enjoys the $D_\pi$-property becomes purely arithmetic.
Keywords: finite group, $D_\pi$-property, Sylow theorem.
Received: 27.08.2007
Revised: 09.01.2008
English version:
Algebra and Logic, 2008, Volume 47, Issue 3, Pages 210–227
DOI: https://doi.org/10.1007/s10469-008-9010-4
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: D. O. Revin, “The $D_\pi$-property in finite simple groups”, Algebra Logika, 47:3 (2008), 364–394; Algebra and Logic, 47:3 (2008), 210–227
Citation in format AMSBIB
\Bibitem{Rev08}
\by D.~O.~Revin
\paper The $D_\pi$-property in finite simple groups
\jour Algebra Logika
\yr 2008
\vol 47
\issue 3
\pages 364--394
\mathnet{http://mi.mathnet.ru/al363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2450888}
\zmath{https://zbmath.org/?q=an:1155.20018}
\elib{https://elibrary.ru/item.asp?id=11654985}
\transl
\jour Algebra and Logic
\yr 2008
\vol 47
\issue 3
\pages 210--227
\crossref{https://doi.org/10.1007/s10469-008-9010-4}
\elib{https://elibrary.ru/item.asp?id=13596830}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49249109894}
Linking options:
  • https://www.mathnet.ru/eng/al363
  • https://www.mathnet.ru/eng/al/v47/i3/p364
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:732
    Full-text PDF :167
    References:123
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024