Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2008, Volume 47, Number 1, Pages 54–70 (Mi al345)  

This article is cited in 1 scientific paper (total in 1 paper)

Cayley polynomials

Y. Yoshii

Akita National College of Technology
Full-text PDF (204 kB) Citations (1)
References:
Abstract: We consider a polynomial version of the Cayley numbers. Namely, a ring of Cayley polynomials is defined in terms of generators and relations in the category of alternative algebras. The ring turns out to be an octonion algebra over an ordinary polynomial ring. Also, a localization (a ring of quotients) of the ring of Cayley polynomials gives another description of an octonion torus. Finally, we find a subalgebra of a prime nondegenerate alternative algebra which is an octonion algebra over its center.
Keywords: alternative algebra, ring of Cayley polynomials, octonion algebra.
Received: 11.10.2006
Revised: 30.07.2007
English version:
Algebra and Logic, 2008, Volume 47, Issue 1, Pages 32–41
DOI: https://doi.org/10.1007/s10469-008-0003-0
Bibliographic databases:
UDC: 512.554
Language: Russian
Citation: Y. Yoshii, “Cayley polynomials”, Algebra Logika, 47:1 (2008), 54–70; Algebra and Logic, 47:1 (2008), 32–41
Citation in format AMSBIB
\Bibitem{Yos08}
\by Y.~Yoshii
\paper Cayley polynomials
\jour Algebra Logika
\yr 2008
\vol 47
\issue 1
\pages 54--70
\mathnet{http://mi.mathnet.ru/al345}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2408570}
\zmath{https://zbmath.org/?q=an:1164.17024}
\transl
\jour Algebra and Logic
\yr 2008
\vol 47
\issue 1
\pages 32--41
\crossref{https://doi.org/10.1007/s10469-008-0003-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255038400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40549136785}
Linking options:
  • https://www.mathnet.ru/eng/al345
  • https://www.mathnet.ru/eng/al/v47/i1/p54
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024