Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2003, Volume 42, Number 3, Pages 261–270 (Mi al29)  

This article is cited in 12 scientific papers (total in 12 papers)

Locally Finite Barely Transitive Groups

V. V. Belyaev, M. Kuzucuoglua

a Middle East Technical University
References:
Abstract: Infinite transitive permutation groups all proper subgroups of which have just finite orbits are treated. Under the extra condition of being locally finite, such groups are proved to be primary, and, moreover, soluble if the stabilizer of some point is soluble.
Keywords: $p$-group, locally finite group, barely transitive group, point stabilizer, transitive finitary permutation representation.
Received: 08.05.2001
Revised: 29.01.2003
English version:
Algebra and Logic, 2003, Volume 42, Issue 3, Pages 147–152
DOI: https://doi.org/10.1023/A:1023946008218
Bibliographic databases:
UDC: 512.544
Language: Russian
Citation: V. V. Belyaev, M. Kuzucuoglu, “Locally Finite Barely Transitive Groups”, Algebra Logika, 42:3 (2003), 261–270; Algebra and Logic, 42:3 (2003), 147–152
Citation in format AMSBIB
\Bibitem{BelKuz03}
\by V.~V.~Belyaev, M.~Kuzucuoglu
\paper Locally Finite Barely Transitive Groups
\jour Algebra Logika
\yr 2003
\vol 42
\issue 3
\pages 261--270
\mathnet{http://mi.mathnet.ru/al29}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2000842}
\zmath{https://zbmath.org/?q=an:1033.20001}
\transl
\jour Algebra and Logic
\yr 2003
\vol 42
\issue 3
\pages 147--152
\crossref{https://doi.org/10.1023/A:1023946008218}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750724908}
Linking options:
  • https://www.mathnet.ru/eng/al29
  • https://www.mathnet.ru/eng/al/v42/i3/p261
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :104
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024