Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2000, Volume 39, Number 4, Pages 465–479 (Mi al287)  

On some subgroups of semilinearly ordered groups

V. M. Kopytov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: Let $G$ be a semilinearly ordered group with a positive cone $P$. Denote by $\mathbf n(G)$ the greatest convex directed normal subgroup of $G$, by $\mathbf o(G)$ the greatest convex right-ordered subgroup of $G$, and by $\mathbf r(G)$ a set of all elements $x$ of $G$ such that $x$ and $x^{-1}$ are comparable with any element of $P^\pm$ (the collection of all group elements comparable with an identity element). Previously, it was proved that $\mathbf r(G)$ is a convex right-ordered subgroup of $G$, and $\mathbf n(G)\subset\mathbf r(G)\subset\mathbf o(G)$. Here, we establish a new property of $\mathbf r(G)$ and show that the inequalities in the given system of inclusions are, generally, strict.
Received: 10.03.1999
English version:
Algebra and Logic, 2000, Volume 39, Issue 4, Pages 268–275
DOI: https://doi.org/10.1007/BF02681651
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: V. M. Kopytov, “On some subgroups of semilinearly ordered groups”, Algebra Logika, 39:4 (2000), 465–479; Algebra and Logic, 39:4 (2000), 268–275
Citation in format AMSBIB
\Bibitem{Kop00}
\by V.~M.~Kopytov
\paper On some subgroups of semilinearly ordered groups
\jour Algebra Logika
\yr 2000
\vol 39
\issue 4
\pages 465--479
\mathnet{http://mi.mathnet.ru/al287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1803586}
\zmath{https://zbmath.org/?q=an:1051.06013}
\transl
\jour Algebra and Logic
\yr 2000
\vol 39
\issue 4
\pages 268--275
\crossref{https://doi.org/10.1007/BF02681651}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52849093627}
Linking options:
  • https://www.mathnet.ru/eng/al287
  • https://www.mathnet.ru/eng/al/v39/i4/p465
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :82
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024