Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 2, Pages 266–296
DOI: https://doi.org/10.33048/alglog.2023.62.206
(Mi al2760)
 

Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid

A. A. Stepanova, E. L. Efremov

Far Eastern Federal University, Vladivostok
References:
Abstract: An axiomatizability criterion is found for the class of subdirectly irreducible $S$-acts over a commutative monoid. As a corollary, a number of properties are presented which a commutative monoid should satisfy provided that the class of subdirectly irreducible acts over it is axiomatizable. The question about a complete description of monoids over which the class of subdirectly irreducible acts is axiomatizable remains open even for the case of a commutative monoid.
Keywords: $S$-act, commutative monoid, subdirectly irreducible $S$-act, axiomatizable class.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-946
Received: 24.03.2022
Revised: 31.01.2024
Document Type: Article
UDC: 510.67:512.56
Language: Russian
Citation: A. A. Stepanova, E. L. Efremov, “Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid”, Algebra Logika, 62:2 (2023), 266–296
Citation in format AMSBIB
\Bibitem{SteEfr23}
\by A.~A.~Stepanova, E.~L.~Efremov
\paper Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid
\jour Algebra Logika
\yr 2023
\vol 62
\issue 2
\pages 266--296
\mathnet{http://mi.mathnet.ru/al2760}
\crossref{https://doi.org/10.33048/alglog.2023.62.206}
Linking options:
  • https://www.mathnet.ru/eng/al2760
  • https://www.mathnet.ru/eng/al/v62/i2/p266
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025