Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 2, Pages 247–265
DOI: https://doi.org/10.33048/alglog.2023.62.205
(Mi al2759)
 

Generalized Schur groups

G. K. Ryabovab

a Novosibirsk State University
b Novosibirsk State Technical University
References:
Abstract: An $S$-ring (Schur ring) is said to be central if it is contained in the center of a group ring. We introduce the notion of a generalized Schur group, i.e., a finite group such that all central $S$-rings over this group are Schurian. It generalizes the notion of a Schur group in a natural way, and for Abelian groups, the two notions are equivalent. We prove basic properties and present infinite families of non-Abelian generalized Schur groups.
Keywords: Schur rings, Schur groups, $p$-groups, Camina groups, dihedral groups.
Funding agency Grant number
Russian Science Foundation 22-71-00021
Received: 13.09.2022
Revised: 31.01.2024
Document Type: Article
UDC: 512.542.74
Language: Russian
Citation: G. K. Ryabov, “Generalized Schur groups”, Algebra Logika, 62:2 (2023), 247–265
Citation in format AMSBIB
\Bibitem{Rya23}
\by G.~K.~Ryabov
\paper Generalized Schur groups
\jour Algebra Logika
\yr 2023
\vol 62
\issue 2
\pages 247--265
\mathnet{http://mi.mathnet.ru/al2759}
\crossref{https://doi.org/10.33048/alglog.2023.62.205}
Linking options:
  • https://www.mathnet.ru/eng/al2759
  • https://www.mathnet.ru/eng/al/v62/i2/p247
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025