Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 2, Pages 179–204
DOI: https://doi.org/10.33048/alglog.2023.62.202
(Mi al2756)
 

Varieties of exponential $R$-groups

M. G. Amaglobelia, A. G. Myasnikovb, T. T. Nadiradzea

a Tbilisi Ivane Javakhishvili State University
b Stevens Institute of Technology
References:
Abstract: The notion of an exponential $R$-group, where $R$ is an arbitrary associative ring with unity, was introduced by R. Lyndon. Myasnikov and Remeslennikov refined the notion of an $R$-group by introducing an additional axiom. In particular, the new concept of an exponential $M R$-group ($R$-ring) is a direct generalization of the concept of an $R$-module to the case of noncommutative groups. We come up with the notions of a variety of $M R$-groups and of tensor completions of groups in varieties. Abelian varieties of $M R$-groups are described, and various definitions of nilpotency in this category are compared. It turns out that the completion of a $2$-step nilpotent $M R$-group is $2$-step nilpotent.
Keywords: Lyndon's $R$-group, $M R$-group, varietiy of $M R$-groups, $\alpha$-commutator, $R$-commutant, nilpotent $M R$-group, tensor completion.
Funding agency Grant number
Shota Rustaveli National Science Foundation FR-21-4713
Received: 29.07.2023
Revised: 31.01.2024
Document Type: Article
UDC: 512.544.33
Language: Russian
Citation: M. G. Amaglobeli, A. G. Myasnikov, T. T. Nadiradze, “Varieties of exponential $R$-groups”, Algebra Logika, 62:2 (2023), 179–204
Citation in format AMSBIB
\Bibitem{AmaMyaNad23}
\by M.~G.~Amaglobeli, A.~G.~Myasnikov, T.~T.~Nadiradze
\paper Varieties of exponential $R$-groups
\jour Algebra Logika
\yr 2023
\vol 62
\issue 2
\pages 179--204
\mathnet{http://mi.mathnet.ru/al2756}
\crossref{https://doi.org/10.33048/alglog.2023.62.202}
Linking options:
  • https://www.mathnet.ru/eng/al2756
  • https://www.mathnet.ru/eng/al/v62/i2/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025