Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 2, Pages 155–178
DOI: https://doi.org/10.33048/alglog.2023.62.201
(Mi al2755)
 

The complexity of inversion in groups

P. E. Alaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We prove that if ${\mathscr A}=(A,\cdot)$ is a group computable in polynomial time (${\rm P}$-computable), then there exists a ${\rm P}$-computable group ${\mathscr B}=(B,\cdot)\cong{\mathscr A}$, in which the operation $x^{-1}$ is also ${\rm P}$-computable. On the other hand, we show that if the center $Z({\mathscr A})$ of a group ${\mathscr A}$ contains an element of infinite order, then under some additional assumptions, there exists a ${\rm P}$-computable group ${\mathscr B}'=(B',\cdot)\cong{\mathscr A}$, in which the operation $x^{-1}$ is not primitive recursive. Also the following general fact in the theory of ${\rm P}$-computable structures is stated: if ${\mathscr A}$ is a ${\rm P}$-computable structure and $E\subseteq A^{2}$ is a ${\rm P}$-computable congruence on ${\mathscr A}$, then the quotient structure ${\mathscr A} / E$ is isomorphic to a ${\rm P}$-computable structure.
Keywords: computable group, inversion operations, primitive recursive function, quotient structure.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0011
Received: 12.05.2022
Revised: 31.01.2024
Document Type: Article
UDC: 510.52+510.67+512.54
Language: Russian
Citation: P. E. Alaev, “The complexity of inversion in groups”, Algebra Logika, 62:2 (2023), 155–178
Citation in format AMSBIB
\Bibitem{Ala23}
\by P.~E.~Alaev
\paper The complexity of inversion in groups
\jour Algebra Logika
\yr 2023
\vol 62
\issue 2
\pages 155--178
\mathnet{http://mi.mathnet.ru/al2755}
\crossref{https://doi.org/10.33048/alglog.2023.62.201}
Linking options:
  • https://www.mathnet.ru/eng/al2755
  • https://www.mathnet.ru/eng/al/v62/i2/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025