Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 1, Pages 33–58
DOI: https://doi.org/10.33048/alglog.2023.62.102
(Mi al2745)
 

On splitting of normalizers of maximal tori in finite groups of Lie type

A. A. Galtab, A. M. Staroletovba

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: Let $G$ be a finite group of Lie type, and $T$ some maximal torus of the group $G$. We bring to a close the study of the question of whether there exists a supplement for a torus $T$ in its algebraic normalizer $N(G,T)$. It is proved that any maximal torus of a group $G\in \{G_2(q),{}^2G_2(q),{}^3D_4(q)\}$ has a supplement in its algebraic normalizer. Also we consider the remaining twisted classical groups ${}^2A_n(q)$ and ${}^2D_n(q)$.
Keywords: finite group of Lie type, twisted group of Lie type, Weyl group, maximal torus, algebraic normalizer.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
Received: 16.01.2023
Revised: 30.10.2023
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. A. Galt, A. M. Staroletov, “On splitting of normalizers of maximal tori in finite groups of Lie type”, Algebra Logika, 62:1 (2023), 33–58
Citation in format AMSBIB
\Bibitem{GalSta23}
\by A.~A.~Galt, A.~M.~Staroletov
\paper On splitting of normalizers of maximal tori in finite groups of Lie type
\jour Algebra Logika
\yr 2023
\vol 62
\issue 1
\pages 33--58
\mathnet{http://mi.mathnet.ru/al2745}
\crossref{https://doi.org/10.33048/alglog.2023.62.102}
Linking options:
  • https://www.mathnet.ru/eng/al2745
  • https://www.mathnet.ru/eng/al/v62/i1/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :45
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024