Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 6, Pages 784–795
DOI: https://doi.org/10.33048/alglog.2022.61.607
(Mi al2742)
 

Generalized stability of the class of injective $S$-acts

A. A. Stepanova

Far Eastern Federal University, Vladivostok
References:
Abstract: The concept of $P$-stability is a particular case of generalized stability of complete theories. We study injective $S$-acts with a $P$-stable theory. It is proved that the class of injective $S$-acts is $(P,1)$-stable only if $S$ is a one-element monoid. Also we describe commutative and linearly ordered monoids $S$ the class of injective $S$-acts over which is $(P,s)$-, $(P,a)$-, and $(P,e)$-stable.
Keywords: monoid, act over monoid, injective act, generalized stability.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-946
Received: 04.03.2022
Revised: 13.10.2023
Document Type: Article
UDC: 510.67:512.56
Language: Russian
Citation: A. A. Stepanova, “Generalized stability of the class of injective $S$-acts”, Algebra Logika, 61:6 (2022), 784–795
Citation in format AMSBIB
\Bibitem{Ste22}
\by A.~A.~Stepanova
\paper Generalized stability of the class of injective $S$-acts
\jour Algebra Logika
\yr 2022
\vol 61
\issue 6
\pages 784--795
\mathnet{http://mi.mathnet.ru/al2742}
\crossref{https://doi.org/10.33048/alglog.2022.61.607}
Linking options:
  • https://www.mathnet.ru/eng/al2742
  • https://www.mathnet.ru/eng/al/v61/i6/p784
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:58
    Full-text PDF :25
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024