Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 6, Pages 720–741
DOI: https://doi.org/10.33048/alglog.2022.61.604
(Mi al2739)
 

Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$

A. A. Onoprienko

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
Abstract: The joint logic of problems and propositions ${\mathrm{QHC}}$ introduced by S. A. Melikhov, as well as intuitionistic modal logic ${\mathrm{QH4}}$, is studied. An immersion of these logics into classical first-order predicate logic is considered. An analog of the Löwenheim–Skolem theorem on the existence of countable elementary submodels for ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$ is established.
Keywords: nonclassical logics, Kripke semantics, translation.
Received: 15.05.2022
Revised: 13.10.2023
Document Type: Article
UDC: 510.53
Language: Russian
Citation: A. A. Onoprienko, “Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$”, Algebra Logika, 61:6 (2022), 720–741
Citation in format AMSBIB
\Bibitem{Ono22}
\by A.~A.~Onoprienko
\paper Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$
\jour Algebra Logika
\yr 2022
\vol 61
\issue 6
\pages 720--741
\mathnet{http://mi.mathnet.ru/al2739}
\crossref{https://doi.org/10.33048/alglog.2022.61.604}
Linking options:
  • https://www.mathnet.ru/eng/al2739
  • https://www.mathnet.ru/eng/al/v61/i6/p720
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :20
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024