Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2000, Volume 39, Number 2, Pages 198–205 (Mi al273)  

This article is cited in 2 scientific papers (total in 2 papers)

Autostability of hyperarithmetic models

A. V. Romina

Novosibirsk State University
Full-text PDF (744 kB) Citations (2)
Abstract: Let $\mathscr M$ be a $\Delta^1_1$-constructivizable model. If its Scott rank $\mathrm{sr}({\mathscr M})$ is strictly less than $\omega_1^\mathrm{CK}$, then it can be proved that it is autostable. If $\mathrm{sr}({\mathscr M})=\omega_1^\mathrm{CK}$, then there exists an ordinal $\alpha<\omega_1^\mathrm{CK}$ such that for all $\gamma>\alpha$, $\mathscr M$ is not autostable in any degree $0^{(\gamma+1)}$. In addition, we consider problems of the $\Delta^1_1$-autostability of $\Delta_1^1$-constructivizable Boolean algebras.
Received: 10.09.1999
Revised: 01.02.1999
English version:
Algebra and Logic, 2000, Volume 39, Issue 2, Pages 114–118
DOI: https://doi.org/10.1007/BF02681665
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: A. V. Romina, “Autostability of hyperarithmetic models”, Algebra Logika, 39:2 (2000), 198–205; Algebra and Logic, 39:2 (2000), 114–118
Citation in format AMSBIB
\Bibitem{Rom00}
\by A.~V.~Romina
\paper Autostability of hyperarithmetic models
\jour Algebra Logika
\yr 2000
\vol 39
\issue 2
\pages 198--205
\mathnet{http://mi.mathnet.ru/al273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1778317}
\zmath{https://zbmath.org/?q=an:0953.03044}
\transl
\jour Algebra and Logic
\yr 2000
\vol 39
\issue 2
\pages 114--118
\crossref{https://doi.org/10.1007/BF02681665}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52849118903}
Linking options:
  • https://www.mathnet.ru/eng/al273
  • https://www.mathnet.ru/eng/al/v39/i2/p198
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :102
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024