|
This article is cited in 2 scientific papers (total in 2 papers)
Autostability of hyperarithmetic models
A. V. Romina Novosibirsk State University
Abstract:
Let $\mathscr M$ be a $\Delta^1_1$-constructivizable model. If its Scott rank $\mathrm{sr}({\mathscr M})$ is strictly less than $\omega_1^\mathrm{CK}$, then it can be proved that it is autostable. If $\mathrm{sr}({\mathscr M})=\omega_1^\mathrm{CK}$, then there exists an ordinal $\alpha<\omega_1^\mathrm{CK}$ such that for all $\gamma>\alpha$, $\mathscr M$ is not autostable in any degree $0^{(\gamma+1)}$. In addition, we consider problems of the $\Delta^1_1$-autostability of $\Delta_1^1$-constructivizable Boolean algebras.
Received: 10.09.1999 Revised: 01.02.1999
Citation:
A. V. Romina, “Autostability of hyperarithmetic models”, Algebra Logika, 39:2 (2000), 198–205; Algebra and Logic, 39:2 (2000), 114–118
Linking options:
https://www.mathnet.ru/eng/al273 https://www.mathnet.ru/eng/al/v39/i2/p198
|
Statistics & downloads: |
Abstract page: | 221 | Full-text PDF : | 102 | References: | 1 | First page: | 1 |
|