Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 5, Pages 523–540
DOI: https://doi.org/10.33048/alglog.2022.61.501
(Mi al2727)
 

On the absoluteness of $\aleph_1$-freeness

D. Herden, A. V. Pasi

Dep. Math., Baylor Univ., Waco, Texas, USA
References:
Abstract: $\aleph_1$-free groups, Abelian groups for which every countable subgroup is free, exhibit a number of interesting algebraic and set-theoretic properties. We will give a complete proof that the property of being $\aleph_1$-free is absolute; that is, if an Abelian group $G$ is $\aleph_1$-free in some transitive model $\mathbf{M}$ of ZFC, then it is $\aleph_1$-free in any transitive model of ZFC containing $G$. The absoluteness of $\aleph_1$-freeness has the following remarkable consequence: an Abelian group $G$ is $\aleph_1$-free in some transitive model of ZFC if and only if it is (countable and) free in some model extension. This set-theoretic characterization will be a starting point for further exploring the relationship between the set-theoretic and algebraic properties of $\aleph_1$-free groups. In particular, we will demonstrate how proofs may be dramatically simplified using model extensions for $\aleph_1$-free groups.
Keywords: $\aleph_1$-free group, Pontryagin's criterion, absoluteness, transitive model.
Received: 11.07.2022
Revised: 09.08.2023
Document Type: Article
UDC: 512.57
Language: Russian
Citation: D. Herden, A. V. Pasi, “On the absoluteness of $\aleph_1$-freeness”, Algebra Logika, 61:5 (2022), 523–540
Citation in format AMSBIB
\Bibitem{HerPas22}
\by D.~Herden, A.~V.~Pasi
\paper On the absoluteness of $\aleph_1$-freeness
\jour Algebra Logika
\yr 2022
\vol 61
\issue 5
\pages 523--540
\mathnet{http://mi.mathnet.ru/al2727}
\crossref{https://doi.org/10.33048/alglog.2022.61.501}
Linking options:
  • https://www.mathnet.ru/eng/al2727
  • https://www.mathnet.ru/eng/al/v61/i5/p523
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :36
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024