Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 4, Pages 461–468
DOI: https://doi.org/10.33048/alglog.2022.61.405
(Mi al2722)
 

Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$

A. V. Kislitsinab

a Omsk State University
b Altai State Pedagogical University
References:
Abstract: We provide a complete description of minimal nonzero $L$-varieties of multiplicative vector spaces over the field $\mathbb Z_2$.
Keywords: multiplicative vector space, identity of vector space, $L$-variety, minimal nonzero $L$-variety (atom).
Funding agency Grant number
Russian Science Foundation 22-21-00745
Received: 11.04.2022
Revised: 29.03.2023
Document Type: Article
UDC: 512.552.4
Language: Russian
Citation: A. V. Kislitsin, “Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$”, Algebra Logika, 61:4 (2022), 461–468
Citation in format AMSBIB
\Bibitem{Kis22}
\by A.~V.~Kislitsin
\paper Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$
\jour Algebra Logika
\yr 2022
\vol 61
\issue 4
\pages 461--468
\mathnet{http://mi.mathnet.ru/al2722}
\crossref{https://doi.org/10.33048/alglog.2022.61.405}
Linking options:
  • https://www.mathnet.ru/eng/al2722
  • https://www.mathnet.ru/eng/al/v61/i4/p461
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :33
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024