Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 3, Pages 308–333
DOI: https://doi.org/10.33048/alglog.2022.61.303
(Mi al2712)
 

Divisible rigid groups. Morley rank

N. S. Romanovskiiab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Let $G$ be a countable saturated model of the theory $\mathfrak{T}_m$ of divisible $m$-rigid groups. Fix the splitting $G_1G_2\ldots G_m$ of a group $G$ into a semidirect product of Abelian groups. With each tuple $(n_1,\ldots,n_m)$ of nonnegative integers we associate an ordinal
$$\alpha=\omega^{m-1}n_m+\ldots+\omega n_2+n_1$$
and denote by $G^{(\alpha)}$ the set $G_1^{n_1}\times G_2^{n_2}\times\ldots\times G_m^{n_m}$, which is definable over $G$ in $G^{n_1+\ldots+n_m}$. Then the Morley rank of $G^{(\alpha)}$ with respect to $G$ is equal to $\alpha$. This implies that
$${\rm RM} (G)=\omega^{m-1}+\omega^{m-2}+\ldots+1.$$
Keywords: divisible $m$-rigid group, Morley rank.
Funding agency Grant number
Russian Science Foundation 19-11-00039
Received: 20.05.2022
Revised: 28.10.2022
Document Type: Article
UDC: 512.5:510.6
Language: Russian
Citation: N. S. Romanovskii, “Divisible rigid groups. Morley rank”, Algebra Logika, 61:3 (2022), 308–333
Citation in format AMSBIB
\Bibitem{Rom22}
\by N.~S.~Romanovskii
\paper Divisible rigid groups. Morley rank
\jour Algebra Logika
\yr 2022
\vol 61
\issue 3
\pages 308--333
\mathnet{http://mi.mathnet.ru/al2712}
\crossref{https://doi.org/10.33048/alglog.2022.61.303}
Linking options:
  • https://www.mathnet.ru/eng/al2712
  • https://www.mathnet.ru/eng/al/v61/i3/p308
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :41
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024