|
Decomposability and computability
B. Khoussainovab, A. G. Melnikovcd a Univ. Auckland, Auckland, NEW ZEALAND
b Algorithms and Logic Lab, UESTC, Chengdu, CHINA
c Victoria Univ. Wellington, Wellington, NEW ZEALAND
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract:
We present a new construction of indecomposable type $\mathbf{0}$ Abelian groups of rank $2$. The new construction is used to study degree spectra of such groups. As a corollary, we obtain a new computability-theoretic proof showing that there exist continuum many nonisomorphic type $\mathbf{0}$ indecomposable Abelian groups of rank $2$.
Keywords:
indecomposable type $\mathbf{0}$ Abelian groups of rank $2$.
Received: 21.10.2021 Revised: 01.09.2022
Citation:
B. Khoussainov, A. G. Melnikov, “Decomposability and computability”, Algebra Logika, 61:2 (2022), 220–229
Linking options:
https://www.mathnet.ru/eng/al2706 https://www.mathnet.ru/eng/al/v61/i2/p220
|
Statistics & downloads: |
Abstract page: | 135 | Full-text PDF : | 43 | References: | 21 |
|