Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 2, Pages 180–200
DOI: https://doi.org/10.33048/alglog.2022.61.203
(Mi al2704)
 

This article is cited in 1 scientific paper (total in 1 paper)

Projections of semilocal rings

S. S. Korobkov

Urals State Pedagogical University, Ekaterinburg
Full-text PDF (973 kB) Citations (1)
References:
Abstract: Associative rings are considered. By a lattice isomorphism (or projection) of a ring $R$ onto a ring $R^{\varphi}$ we mean an isomorphism $\varphi$ of the subring lattice $L(R)$ of a ring $R$ onto the subring lattice $L(R^{\varphi})$ of a ring $R^{\varphi}$. Let $M_n(GF(p^k))$ be the ring of all square matrices of order $n$ over a finite field $GF(p^k)$, where $n$ and $k$ are natural numbers, $p$ is a prime. A finite ring $R$ with identity is called a semilocal (primary) ring if $R/{\rm Rad} R\cong M_n(GF(p^k))$. It is known that a finite ring $R$ with identity is a semilocal ring iff $R\cong M_n(K)$ and $K$ is a finite local ring. Here we study lattice isomorphisms of finite semilocal rings. It is proved that if $\varphi$ is a projection of a ring $R=M_n(K)$, where $K$ is an arbitrary finite local ring, onto a ring $R^{\varphi}$, then $R^{\varphi}=M_n(K')$, in which case $K'$ is a local ring lattice-isomorphic to the ring $K$. We thus prove that the class of semilocal rings is lattice definable.
Keywords: finite semilocal rings, lattice isomorphisms of associative rings.
Received: 19.01.2022
Revised: 01.09.2022
Document Type: Article
UDC: 512.552
Language: Russian
Citation: S. S. Korobkov, “Projections of semilocal rings”, Algebra Logika, 61:2 (2022), 180–200
Citation in format AMSBIB
\Bibitem{Kor22}
\by S.~S.~Korobkov
\paper Projections of semilocal rings
\jour Algebra Logika
\yr 2022
\vol 61
\issue 2
\pages 180--200
\mathnet{http://mi.mathnet.ru/al2704}
\crossref{https://doi.org/10.33048/alglog.2022.61.203}
Linking options:
  • https://www.mathnet.ru/eng/al2704
  • https://www.mathnet.ru/eng/al/v61/i2/p180
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024