Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 6, Pages 612–635
DOI: https://doi.org/10.33048/alglog.2021.60.607
(Mi al2690)
 

This article is cited in 2 scientific papers (total in 2 papers)

Modal bilattice logic and its extensions

S. O. Speranski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (293 kB) Citations (2)
References:
Abstract: We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig's interpolation property.
Keywords: many-valued modal logic, strong negation, first-degree entailment, algebraic logic.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1614
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation, agreement No. 075-15-2019-1614.
Received: 01.09.2021
Revised: 08.04.2022
English version:
Algebra and Logic, 2022, Volume 60, Issue 6, Pages 407–424
DOI: https://doi.org/10.1007/s10469-022-09667-x
Bibliographic databases:
Document Type: Article
UDC: 510.643
Language: Russian
Citation: S. O. Speranski, “Modal bilattice logic and its extensions”, Algebra Logika, 60:6 (2021), 612–635; Algebra and Logic, 60:6 (2022), 407–424
Citation in format AMSBIB
\Bibitem{Spe21}
\by S.~O.~Speranski
\paper Modal bilattice logic and its extensions
\jour Algebra Logika
\yr 2021
\vol 60
\issue 6
\pages 612--635
\mathnet{http://mi.mathnet.ru/al2690}
\crossref{https://doi.org/10.33048/alglog.2021.60.607}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4443287}
\transl
\jour Algebra and Logic
\yr 2022
\vol 60
\issue 6
\pages 407--424
\crossref{https://doi.org/10.1007/s10469-022-09667-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128905133}
Linking options:
  • https://www.mathnet.ru/eng/al2690
  • https://www.mathnet.ru/eng/al/v60/i6/p612
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025