Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 6, Pages 587–611
DOI: https://doi.org/10.33048/alglog.2021.60.606
(Mi al2689)
 

Virtual algebraic isomorphisms between predicate calculi of finite rich signatures

M. G. Peretyat'kin

Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
References:
Abstract: It is proved that every two predicate calculi of finite rich signatures are algebraically virtually isomorphic, i.e., some of their Cartesian extensions are algebraically isomorphic. As an important application, it is stated that for predicate calculi in any two finite rich signatures, there exists a computable isomorphism between their Tarski–Lindenbaum algebras which preserves all model-theoretic properties of an algebraic type corresponding to the real practice of research in model theory.
Keywords: predicate calculi, Tarski–Lindenbaum algebra, virtual algebraic isomorphisms.
Received: 18.01.2020
Revised: 08.04.2022
Document Type: Article
UDC: 510.6:510.67
Language: Russian
Citation: M. G. Peretyat'kin, “Virtual algebraic isomorphisms between predicate calculi of finite rich signatures”, Algebra Logika, 60:6 (2021), 587–611
Citation in format AMSBIB
\Bibitem{Per21}
\by M.~G.~Peretyat'kin
\paper Virtual algebraic isomorphisms between predicate calculi of finite rich signatures
\jour Algebra Logika
\yr 2021
\vol 60
\issue 6
\pages 587--611
\mathnet{http://mi.mathnet.ru/al2689}
\crossref{https://doi.org/10.33048/alglog.2021.60.606}
Linking options:
  • https://www.mathnet.ru/eng/al2689
  • https://www.mathnet.ru/eng/al/v60/i6/p587
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025