Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 6, Pages 575–586
DOI: https://doi.org/10.33048/alglog.2021.60.605
(Mi al2688)
 

This article is cited in 2 scientific papers (total in 2 papers)

Complexity of the problem of being equivalent to Horn formulas

N. T. Kogabaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (359 kB) Citations (2)
References:
Abstract: We look at the complexity of the existence problem for a Horn sentence (identity, quasi-identity, $\forall$-sentence, $\exists$-sentence) equivalent to a given one. It is proved that if the signature contains at least one symbol of arity $k\geqslant 2$, then each of the problems mentioned is an $m$-complete $\Sigma^0_1$ set.
Keywords: Horn formula, $m$-reducibility, $\Sigma^0_1$ set.
Received: 23.10.2020
Revised: 08.04.2022
Document Type: Article
UDC: 510.53
Language: Russian
Citation: N. T. Kogabaev, “Complexity of the problem of being equivalent to Horn formulas”, Algebra Logika, 60:6 (2021), 575–586
Citation in format AMSBIB
\Bibitem{Kog21}
\by N.~T.~Kogabaev
\paper Complexity of the problem of being equivalent to Horn formulas
\jour Algebra Logika
\yr 2021
\vol 60
\issue 6
\pages 575--586
\mathnet{http://mi.mathnet.ru/al2688}
\crossref{https://doi.org/10.33048/alglog.2021.60.605}
Linking options:
  • https://www.mathnet.ru/eng/al2688
  • https://www.mathnet.ru/eng/al/v60/i6/p575
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :18
    References:37
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024