Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 6, Pages 549–556
DOI: https://doi.org/10.33048/alglog.2021.60.602
(Mi al2685)
 

This article is cited in 3 scientific papers (total in 3 papers)

Periodic groups saturated with finite simple groups $L_4(q)$

Wenbin Guoab, D. V. Lytkinacd, V. D. Mazurovc

a School Math. Sci., Univ. Sci. Tech. China, Hefei, P. R. CHINA
b School Sci., Hainan Univ., Haikou, Hainan, P. R. CHINA
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
d Siberian State University of Telecommunications and Informatics, Novosibirsk
Full-text PDF (222 kB) Citations (3)
References:
Abstract: If $M$ is a set of finite groups, then a group $G$ is said to be saturated with the set $M$ (saturated with groups in $M$) if every finite subgroup of $G$ is contained in a subgroup isomorphic to some element of $M$. It is proved that a periodic group with locally finite centralizers of involutions, which is saturated with a set consisting of groups $L_4(q)$, where $q$ is odd, is isomorphic to $L_4(F)$ for a suitable field $F$ of odd characteristic.
Keywords: periodic group, locally finite group, involution, saturation.
Received: 01.10.2021
Revised: 08.04.2022
Document Type: Article
UDC: 512.542
Language: Russian
Citation: Wenbin Guo, D. V. Lytkina, V. D. Mazurov, “Periodic groups saturated with finite simple groups $L_4(q)$”, Algebra Logika, 60:6 (2021), 549–556
Citation in format AMSBIB
\Bibitem{GuoLytMaz21}
\by Wenbin~Guo, D.~V.~Lytkina, V.~D.~Mazurov
\paper Periodic groups saturated with finite simple groups $L_4(q)$
\jour Algebra Logika
\yr 2021
\vol 60
\issue 6
\pages 549--556
\mathnet{http://mi.mathnet.ru/al2685}
\crossref{https://doi.org/10.33048/alglog.2021.60.602}
Linking options:
  • https://www.mathnet.ru/eng/al2685
  • https://www.mathnet.ru/eng/al/v60/i6/p549
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024