Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 5, Pages 471–496
DOI: https://doi.org/10.33048/alglog.2021.60.502
(Mi al2680)
 

This article is cited in 1 scientific paper (total in 1 paper)

Complexity of Lambek calculi with modalities and of total derivability in grammars

S. M. Dudakova, B. N. Karlova, S. L. Kuznetsovb, E. M. Fofanovac

a Tver State University
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University
Full-text PDF (317 kB) Citations (1)
References:
Abstract: The Lambek calculus with the unit can be defined as the atomic theory (algebraic logic) of the class of residuated monoids. This calculus, being a theory of a broader class of algebras than Heyting ones, is weaker than intuitionistic logic. Namely, it lacks structural rules: permutation, contraction, and weakening. We consider two extensions of the Lambek calculus with modalities — the exponential, under which all structural rules are permitted, and the relevant modality, under which only permutation and contraction rules are allowed. The Lambek calculus with a relevant modality is used in mathematical linguistics. Both calculi are algorithmically undecidable. We consider their fragments in which the modality is allowed to be applied to just formulas of Horn depth not greater than $1$. We prove that these fragments are decidable and belong to the NP class. To show this, in the case of a relevant modality, we introduce a new notion of $\mathcal{R}$-total derivability in context-free grammars, i.e., existence of a derivation in which each rule is used at least a given number of times. It is stated that the $\mathcal{R}$-totality problem is NP-hard for context-free grammars. Also we pinpoint algorithmic complexity of $\mathcal{R}$-total derivability for more general classes of generative grammars.
Keywords: Lambek calculus, substructural logic, exponential, relevant modality, algorithmic complexity, context-free grammars, total derivability.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00435
Ministry of Science and Higher Education of the Russian Federation МК-1184.2021.1.1
S. M. Dudakov, B. N. Karlov and S. L. Kuznetsov are supported by RFBR, project No. 20-01-00435. S. L. Kuznetsov is supported by the Council for Grants (under RF President), grant MK-1184.2021.1.1.
Received: 02.04.2021
Revised: 29.11.2021
English version:
Algebra and Logic, 2021, Volume 60, Issue 5, Pages 308–326
DOI: https://doi.org/10.1007/s10469-021-09657-5
Bibliographic databases:
Document Type: Article
UDC: 510.649
Language: Russian
Citation: S. M. Dudakov, B. N. Karlov, S. L. Kuznetsov, E. M. Fofanova, “Complexity of Lambek calculi with modalities and of total derivability in grammars”, Algebra Logika, 60:5 (2021), 471–496; Algebra and Logic, 60:5 (2021), 308–326
Citation in format AMSBIB
\Bibitem{DudKarKuz21}
\by S.~M.~Dudakov, B.~N.~Karlov, S.~L.~Kuznetsov, E.~M.~Fofanova
\paper Complexity of Lambek calculi with modalities and of total derivability in grammars
\jour Algebra Logika
\yr 2021
\vol 60
\issue 5
\pages 471--496
\mathnet{http://mi.mathnet.ru/al2680}
\crossref{https://doi.org/10.33048/alglog.2021.60.502}
\transl
\jour Algebra and Logic
\yr 2021
\vol 60
\issue 5
\pages 308--326
\crossref{https://doi.org/10.1007/s10469-021-09657-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000725412800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120537435}
Linking options:
  • https://www.mathnet.ru/eng/al2680
  • https://www.mathnet.ru/eng/al/v60/i5/p471
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :56
    References:31
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024